Copied to
clipboard

G = C3xC8:C22order 96 = 25·3

Direct product of C3 and C8:C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3xC8:C22, D8:2C6, C24:6C22, SD16:1C6, C12.63D4, M4(2):1C6, C12.48C23, C8:(C2xC6), C4oD4:4C6, (C2xD4):5C6, D4:2(C2xC6), (C3xD8):6C2, Q8:3(C2xC6), (C6xD4):14C2, C6.78(C2xD4), (C2xC6).24D4, C4.14(C3xD4), C2.15(C6xD4), (C3xSD16):5C2, C4.5(C22xC6), C22.5(C3xD4), (C3xD4):11C22, (C3xM4(2)):3C2, (C3xQ8):10C22, (C2xC12).69C22, (C3xC4oD4):7C2, (C2xC4).10(C2xC6), SmallGroup(96,183)

Series: Derived Chief Lower central Upper central

C1C4 — C3xC8:C22
C1C2C4C12C3xD4C3xD8 — C3xC8:C22
C1C2C4 — C3xC8:C22
C1C6C2xC12 — C3xC8:C22

Generators and relations for C3xC8:C22
 G = < a,b,c,d | a3=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 116 in 68 conjugacy classes, 40 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, D4, Q8, C23, C12, C12, C2xC6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, C24, C2xC12, C2xC12, C3xD4, C3xD4, C3xD4, C3xQ8, C22xC6, C8:C22, C3xM4(2), C3xD8, C3xSD16, C6xD4, C3xC4oD4, C3xC8:C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, C2xD4, C3xD4, C22xC6, C8:C22, C6xD4, C3xC8:C22

Permutation representations of C3xC8:C22
On 24 points - transitive group 24T114
Generators in S24
(1 15 19)(2 16 20)(3 9 21)(4 10 22)(5 11 23)(6 12 24)(7 13 17)(8 14 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(17 21)(18 24)(20 22)
(1 5)(3 7)(9 13)(11 15)(17 21)(19 23)

G:=sub<Sym(24)| (1,15,19)(2,16,20)(3,9,21)(4,10,22)(5,11,23)(6,12,24)(7,13,17)(8,14,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,21)(18,24)(20,22), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)>;

G:=Group( (1,15,19)(2,16,20)(3,9,21)(4,10,22)(5,11,23)(6,12,24)(7,13,17)(8,14,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(17,21)(18,24)(20,22), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23) );

G=PermutationGroup([[(1,15,19),(2,16,20),(3,9,21),(4,10,22),(5,11,23),(6,12,24),(7,13,17),(8,14,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(17,21),(18,24),(20,22)], [(1,5),(3,7),(9,13),(11,15),(17,21),(19,23)]])

G:=TransitiveGroup(24,114);

C3xC8:C22 is a maximal subgroup of   D12:18D4  M4(2).D6  M4(2).13D6  D12.38D4  D8:4D6  D8:5D6  D8:6D6

33 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C6A6B6C6D6E···6J8A8B12A12B12C12D12E12F24A24B24C24D
order1222223344466666···68812121212121224242424
size1124441122411224···4442222444444

33 irreducible representations

dim111111111111222244
type+++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4C3xD4C3xD4C8:C22C3xC8:C22
kernelC3xC8:C22C3xM4(2)C3xD8C3xSD16C6xD4C3xC4oD4C8:C22M4(2)D8SD16C2xD4C4oD4C12C2xC6C4C22C3C1
# reps112211224422112212

Matrix representation of C3xC8:C22 in GL4(F7) generated by

4000
0400
0040
0004
,
4104
4330
2564
3321
,
6032
0622
0010
0001
,
0632
6042
0060
0001
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[4,4,2,3,1,3,5,3,0,3,6,2,4,0,4,1],[6,0,0,0,0,6,0,0,3,2,1,0,2,2,0,1],[0,6,0,0,6,0,0,0,3,4,6,0,2,2,0,1] >;

C3xC8:C22 in GAP, Magma, Sage, TeX

C_3\times C_8\rtimes C_2^2
% in TeX

G:=Group("C3xC8:C2^2");
// GroupNames label

G:=SmallGroup(96,183);
// by ID

G=gap.SmallGroup(96,183);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-2,-2,313,938,2164,1090,88]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<